
phpMyEdit

instant MySQL table editor and code
generator

Ondrej Jombik

Doug Hockinson

phpMyEdit: instant MySQL table editor and code generator
by Ondrej Jombik and Doug Hockinson

Copyright © 2002, 2003 by Platon software development group

Table of Contents
1. Introduction ..??

1.1. Overview...??
1.2. Features...??
1.3. Requirements..??

2. Installation ..??

2.1. Getting started...??
2.2. Table selection..??
2.3. ID selection...??
2.4. Result script..??

3. General options..??

3.1. Database connection...??
3.2. Unique key..??
3.3. Common options...??
3.4. Permission options..??
3.5. Sorting...??
3.6. Navigation...??
3.7. Filters..??
3.8. Triggers...??
3.9. Logging user actions...??
3.10. Languages...??
3.11. CGI variables..??
3.12. CSS classes policy..??

4. Fields options..??

4.1. Definition overview...??
4.2. Basic options...??
4.3. Booleans..??
4.4. Input restrictions...??
4.5. Output control...??
4.6. URL linking..??

5. Extensions...??

5.1. Overview...??
5.2. phpMyEdit-slide...??
5.3. phpMyEdit-report...??

v

6. Other information ..??

6.1. Authors and homepage...??
6.2. License..??
6.3. Support and feedback..??
6.4. Mailinglist...??
6.5. CVS access..??

vi

List of Examples
3-1. Database connection options..??
3-2. Unique key definition...??
3-3. Unique key type definition...??
3-4. Displayed records...??
3-5. Multiple selections option..??
3-6. Special page elements...??
3-7. Images URL..??
3-8. Turning off default execution...??
3-9. Full permissions..??
3-10. Full permissions without delete..??
3-11. Read only permissions..??
3-12. Sort field option..??
3-13. Multiple sort fields..??
3-14. Navigation possibilities..??
3-15. Filter examples...??
3-16. Triggers usage...??
3-17. Logging...??
3-18. Log table schema..??
3-19. Languages selection..??
3-20. CGI variables appending..??
3-21. CGI variables overwriting..??
3-22. Persistent CGI variables...??
3-23. CSS class name schema..??
3-24. CSS class name examples...??
4-1. Basic field definition...??
4-2. Field name examples..??
4-3. Field guidance...??
4-4. Field CSS customization..??
4-5. Filter selections...??
4-6. Other display options..??
4-7. Required fields..??
4-8. Field sorting..??
4-9. Striping tags..??
4-10. Simple input restriction..??
4-11. Table lookup restriction..??
4-12. Advanced table lookup...??
4-13. Complex table lookup example..??
4-14. Input restriction using additional values...??

vii

4-15. Input field widths..??
4-16. Field sizes...??
4-17. Textarea field height & width...??
4-18. Character length limit...??
4-19. Wrapping..??
4-20. Print mask field definition..??
4-21. Date mask field definitions...??
4-22. Simple URL examples..??
4-23. URL target example..??
4-24. URL display example...??
4-25. URL prefix and postfix...??

viii

Chapter 1. Introduction

1.1. Overview
How many times have you hand coded a MySQL table editor in PHP? phpMyEdit
application provides an instant table editor.

phpMyEdit generates PHP code for displaying/editing MySQL tables in HTML. All
you need to do is to write a simple calling program (a utility to do this is included). It
includes a huge set of table manipulation functions (record addition, change, view,
copy, and removal), table sorting, filtering, table lookups, and more.

1.2. Features
The most important features offered by phpMyEdit are:

• table manipulation code generation
• record addition, change, view, copy and removal
• table paging, sorting and filtering
• lookups into other tables (1:M bindings)
• permission configuration
• multiple navigation style possibilities
• output design control using CSS
• logging user actions
• multilanguage support
• ability to extend base class

and many others.

1.3. Requirements
phpMyEdit requires web server (we recommend Apache), PHP interpreter without any
special modules and MySQL relational database management system.

1

Chapter 1. Introduction

Product is developed and tested using Apache 1.3.23, PHP 4.1.2 and MySQL 3.23.47
under Linux Mandrake 8.2. It should work well on the same or similar, but also some
different configurations. Please notify phpMyEdit developers in the event you
encounter problems with program’s compatibilities or capabilities.

2

Chapter 2. Installation
In this chapter are detailed installation notes written.

2.1. Getting started
phpMyEdit enables PHP scripters to quickly create forms used to interact with data
stored in a MySQL database table. The procedure described below will enable you to
generate thecalling scriptcontaining the database logon and a variety of options. An
included filephpMyEdit.class.php will later manipulate MySQL records based on
user options which are configurable in the calling script. The calling script essentially
generates one form which facilitates actions that include add record, change record,
copy record, view record, delete record, etc.

phpMyEdit is available for download from Platon.SK
(http://www.platon.sk/projects/phpMyEdit/). Extract, or unzip, the program files to
your computer’s hard disk. The download file includes icons and various language files
which should be extracted into sub-folders below the file named
phpMyEdit.class.php .

Important: Before uploading the program files to your server, make certain that
your FTP client is not configured to force filenames to lower case letters.

With the program files uploaded to your server, point your web browser to the file
namedphpMyEditSetup.php . You will be prompted to enter your MySQL database
logon (hostname, username, and password) and click theSubmit button. The logon
screen should resemble the picture below.

3

Chapter 2. Installation

2.2. Table selection
After successfully logging on to a MySQL database, a list of MySQL tables will be
displayed. Select a table and click theSubmit button.

4

Chapter 2. Installation

2.3. ID selection
After selecting a table, a list of its MySQL columns will be displayed. Select a column
that is a unique numeric identifier. The unique numeric identifier is typically that
column which is the unique auto-incremented record ID. Although non-numeric unique
identifiers are also supported, we recommend you to use numeric one.

Below the list of column names you will find two input boxes containing a suggested
Page Title and suggestedBase Filename. Either accept or change the content of the
input boxes. An attempt will be made to generate a script, write the script to the base
filename, and then display the script in the web browser.

2.4. Result script
After clicking theSubmit button, the script should appear in your web browser along
with a message indicating whether or not the attempted disk write was successful.

5

Chapter 2. Installation

Depending on your system configuration, the script may or may not have been written
to the directory from whichphpMyEditSetup.php was run. You will need to either
open the file that was written to disk or else highlight and copy the script from the web
browser and paste it into a blank document in your text editor.

If the proposedBase Filename was "employees" and the disk write was successful, a
file namedemployees.php would exist in the directory from which
phpMyEditSetup.php was run.

If the disk write was NOT successful and you’ve pasted the script into your text editor,
save the file in the same directory which contains the phpMyEdit program files. Save
the file with the.php extension.

Because HTML header and footer requirements vary between users, no header or
footer is generated. Add or include appropriate HTML markup as necessary (e.g.
<HTML><HEAD> [headers] </HEAD><BODY> [script] </BODY></HTML>). By
default the table will be enclosed by <div class="main"> ... </div> which offers a

6

Chapter 2. Installation

degree of formatting in terms of using CSS (cascading style sheets).

Once the header and footer are in place, there are script configuration options that you
should review and possibly change.

7

Chapter 2. Installation

8

Chapter 3. General options
Open the script in your text editor. No HTML header or footer is created, thus you may
want to include a header at the top of the script, and include a footer at the end of the
script.

3.1. Database connection
Various options are configured near the top of the script, most notably the database
logon. For security reasons, you may want to copy/paste the logon options to a
separate, included file.

MySQL logon options host name, user name, password, database, and table appear in
the following format.

Example 3-1. Database connection options

$opts[’hn’] = ’localhost’;
$opts[’un’] = ’username’;
$opts[’pw’] = ’password’;
$opts[’db’] = ’database’;
$opts[’tb’] = ’table’;

It is recommended that the first four options shown above be moved to a separate,
included file.

3.2. Unique key
Assuming that ’id’ is the name of the MySQL column selected as the unique identifier
whenphpMyEditSetup.php script was run, the key will appear in the script as:

Example 3-2. Unique key definition

// Name of field which is the unique key
$opts[’key’] = ’id’;

9

Chapter 3. General options

Important: There were problems reported by phpMyEdit users regarding to
usage of MySQL reserved word as an unique key name (the example for this is
"key" name). Thus we recommend you to use another name of unique key. Usage
of "id" or "ID" names should be safe and good idea.

The column type for the unique numeric identifier should appear as:

Example 3-3. Unique key type definition

// Type of key field (int, real, string, date, etc.)
$opts[’key_type’] = ’int’;

The argument ’int’ shown above indicates the column type is an integer. If the column
type was a date then ’date’ would appear above instead of ’int’. Other possible unique
key types are ’real’ or ’string’.

Important: If you are using ’real’ key type and some problems with record
manipulaton have occured, it is probably because your MySQL key datatype is
’float’. Comparsions with this datatype is a common problem in most computer
languages (SQL including), because floating-point values are not exact values. In
most cases, changing MySQL datatype from ’float’ to ’double’ and preserving
’real’ as phpMyEdit key type should solve this problem.

For more information about this issue, read Solving Problems with No Matching
Rows (http://www.mysql.com/doc/en/No_matching_rows.html) chapter in the
MySQL manual (in version 3.23.47 it was A.5.6).

3.3. Common options

Displayed records
Option controls the number of records displayed on the screen. Change the argument

10

Chapter 3. General options

for $opts[’inc’] in order to specify the maximum number of rows to display at one
time. The default is 15 rows. To display all found records, specify a value of -1
(negative 1).

Example 3-4. Displayed records

$opts[’inc’] = 20; // list 20 records per page

$opts[’inc’] = -1; // list all found records

Multiple selections
This option affects the display of <SELECT MULTIPLE> boxes. If the MySQL
column type is "set", the number of lines displayed on multiple selection filters is
specified as:

Example 3-5. Multiple selections option

$opts[’multiple’] = ’4’; // default is 4

Setting$opts[’multiple’] to a large number may adversely affect the appearance
of your form. Four (4) is the default.

Special page elements
There are some special page elements, that may be turned on or off by changing
$opts[’display’] array.

Setting thequery or sort values totrue will display the current query or sort order
near the top of the table. To display the execution time of the query below the table,
change thetime value fromfalse to true . Settingsort to true is very helpful in
understanding how cumulative sorting takes place.

To display all these page elements use:

Example 3-6. Special page elements

$opts[’display’] = array(

11

Chapter 3. General options

’query’ => true,
’sort’ => true,
’time’ => true

);

Images URL
If graphic links are selected with navigation (for example by setting
$opts[’navigation’] to ’GD’) then$opts[’url’] can be used to specify the
folder containing images. The default image location is normally one folder (or
directory level) below the location of thephpMyEdit.class.php file.

Example 3-7. Images URL

$opts[’url’] = array(’images’ => ’images/’);

Other URLs for another elements may be added into this array in future.

Code execution
Since version 4.0, phpMyEdit automatically starts its execution. You can turn this
feature off by setting:

Example 3-8. Turning off default execution

$opts[’execute’] = 0;

If variable$opts[’execute’] is not defined, its value is considered as1.

3.4. Permission options
Commonly used options include:

12

Chapter 3. General options

A -- add
C -- change
P -- copy
V -- view
D -- delete
F -- filter (search)
I -- initial sort suppressed

Table listing is always enabled, since all actions are executed from this screen. But it is
possible to get specific behaviours without table listing using appropriate phpMyEdit
extension. SeeExtensionschapter for more information.

Full privileges to manipulate records are configured as:

Example 3-9. Full permissions

$opts[’options’] = ’ACPVDF’;

To deny the user the ability to delete records use:

Example 3-10. Full permissions without delete

$opts[’options’] = ’ACPVF’;

To limit the user to view, sort, list, or filter records use this:

Example 3-11. Read only permissions

$opts[’options’] = ’VFL’;

In a multi-user environment, it would be wise to only provide the system administrator
with the ability to delete records.

3.5. Sorting
phpMyEdit offers powerful default and/or additional sorting capabilities via
$opts[’sort_field’] option. You can define column name or column field number
you’d prefer to sort on when the script is first loaded. To get descending sort order,

13

Chapter 3. General options

prefix the column name or field number with dash (-) sign. Look at the following
examples:

Example 3-12. Sort field option

$opts[’sort_field’] = ’company’; // sorting according company field
$opts[’sort_field’] = 3; // sorting according 4th field
$opts[’sort_field’] = ’-id’; // descending sorting according id field

Now, let’s assume you want to sort your table according to ’company’ column, but in
addition also according to ’department’ column. So the default sort order should be by
company first, then department. For this purpose, you can set array with column names
and/or field numbers to$opts[’sort_field’] variable.

Example 3-13. Multiple sort fields

$opts[’sort_field’] = array(’company’, ’department’);

Also note that phpMyEdit’s sorting feature is cumulative. This means, that if default
sort fields are specified and the user selects (clicks) to sort by another column in table
listing screen, the resulting screen will be sorted by user selected column first and then
by specified default sort fields. Next click on another sort column will again force to
sort table by selected column first. Previously selected fields or default ones will follow
up in sorting sequence.

This feature enables selecting more than one sort field on the fly. To clear sort fields
sequence and to initialize default one, click onClear link in left upper corner. This link
could be enabled by setting$opts[’display’][’sort’] to true . SeeSpecial page
elementssubsection for more information. We also recommend you to enable this
option to see how this described sorting feature works.

3.6. Navigation
The style and location of navigational links is a combined setting. The generated form
will have various buttons, such asNext, Prev, Save, Cancel, etc. Their location

14

Chapter 3. General options

relative to the table can be changed. Button positions are:

U -- up / above table
D -- down / below table (default)

Button possitions should be combined with navigation styles. The style of navigational
links may be text, buttons, or graphic images (icons):

B -- buttons (default)
T -- text links
G -- graphic links

Possible combinations include:

Example 3-14. Navigation possibilities

$opts[’navigation’] = ’DB’; // buttons below table
$opts[’navigation’] = ’DT’; // text links below table
$opts[’navigation’] = ’DG’; // graphics below table
$opts[’navigation’] = ’UB’; // buttons above table
$opts[’navigation’] = ’UT’; // text links above table
$opts[’navigation’] = ’UG’; // graphics above table

$opts[’navigation’] = ’UDBTG’ // all navigations styles

As you can see from the last example in box above, all navigation styles can be mixed
up together to fit your needs. There is no functionality difference between navigation
with graphic/text links and navigation using radio buttons selection.

3.7. Filters
Table-level filter capability (if set) is included in the WHERE clause of any generated
SELECT statement. This gives you ability to work with a subset of data from table.

Example 3-15. Filter examples

$opts[’filters’] = ’column1 like "%11%" AND column2 < 17’;

$opts[’filters’] = ’section_id = 9’;

15

Chapter 3. General options

$opts[’filters’] = ’Table0.sessions_count > 200’;

For future is planned initialization like the following one.

$opts[’filters’] = array(
’col_name_1’ => ’value_1’,
’col_name_2’ => ’value_2’

);

The main advantage of this approach will be thatcol_name_1 andcol_name_2 fields
are automatically considered as read-only on display record pages with pre-set
value_1 , value_2 and without need to enter them manually.

3.8. Triggers
Triggers are files that are included viainclude() statement that perform actions
before or after insert, update, or delete of record.

• ’before’ triggers are usually used to verify conditions prior to executing the main
operation.

• ’after’ triggers are usually used to perform follow-on operations after the main
operation. For example, to update secondary tables to enforce referential integrity or
to update aggregate tables.

The operation sequence is this: before, main, after. If any operation fails, not only
should the next operation(s) not be executed, but the previous ones are ’rolled back’ as
if they never happened. If a database is not able to do this, it is not ’transaction-safe’.

Triggers are risky in basic MySQL as there is no native transaction support. It is not
transaction-safe by default. There are transaction-safe table types in MySQL that can
be conditionally built (see MySQL-Max), but phpMyEdit is currently not set up to
support real transactions. What that means is that if an operation fails, the database may
be left in an intermediate and invalid state.

The programmer must understand and accept these risks prior to using the phpMyEdit
triggers mechanism. If the triggers are used, they execute within the namespace or
scope of the phpMyEdit class.

16

Chapter 3. General options

Triggers must return true or false to indicate success or failure.

Example 3-16. Triggers usage

$opts[’triggers’][’insert’][’before’] = ’categories.TIB.inc’;
$opts[’triggers’][’insert’][’after’] = ’categories.TIA.inc’;
$opts[’triggers’][’update’][’before’] = ’categories.TUB.inc’;
$opts[’triggers’][’update’][’after’] = ’categories.TUA.inc’;
$opts[’triggers’][’delete’][’before’] = ’categories.TDB.inc’;
$opts[’triggers’][’delete’][’after’] = ’categories.TDA.inc’;

In every trigger file you have available following usable variables. Some from them are
regarding only to particular performed action.

$this object reference
$this->dbh initialized MySQL database handle
$this->key primary key name
$this->key_type primary key type
$this->key_delim primary key deliminator
$this->rec primary key value (update and delete only)
$newvals associative array of new values (update and insert only)
$oldvals associative array of old values (update and delete only)
$changed array of keys with changed values

There are also other variables available. For example every class property can be
accessed using$this object reference. All variables occurs in ’before’ triggers as well
as in ’after’ triggers.

It is recommended to use$this->myQuery() method in order to perform database
queries for fetching additional data or doing inserts or updates to other database tables.

3.9. Logging user actions
You can log performed user actions into special "changelog" table. You must have table
created and specified for phpMyEdit using the$opts[’logtable’] option.

Example 3-17. Logging

$opts[’logtable’] = ’changelog’;

17

Chapter 3. General options

Example 3-18. Log table schema

CREATE TABLE changelog (
updated timestamp(14) default NULL,
user varchar(50) default NULL,
host varchar(255) default NULL,
operation varchar(50) default NULL,
tab varchar(50) default NULL,
rowkey varchar(255) default NULL,
col varchar(255) default NULL,
oldval blob default NULL,
newval blob default NULL

);

phpMyEdit provides also possibility of notifying about performed user actions by
sending informational e-mail. This feature configuration is done via
$opts[’notify’] array with following variables notation. Note that on every place
where one e-mail address should be written, it is possible to have array of multiple
e-mail addresses there. This feature is provided for informating more than one user
about particular performed action.

$opts[’notify’][’from’] sender envelope e-mail address (webmaster@SERVER_NAME by default)
$opts[’notify’][’prefix’] prefix of e-mail messages subject (no prefix by default)
$opts[’notify’][’wrap’] maximum width of e-mail message body (by default72 will be used)
$opts[’notify’][’insert’] e-mail address for insert action notification
$opts[’notify’][’update’] e-mail address for update action notification
$opts[’notify’][’delete’] e-mail address for delete action notification
$opts[’notify’][’all’] e-mail address for all actions notification

In both cases, changelog table and e-mail notyfing are values of "user" extracted from
the variables in following order:$_SERVER[’REMOTE_USER’],
$HTTP_SERVER_VARS[’REMOTE_USER’]and global variable$REMOTE_USER.
Similary "host" variable is checked in$_SERVER[’REMOTE_ADDR’], than in
$HTTP_SERVER_VARS[’REMOTE_ADDR’]and at the end in global variable
$REMOTE_ADDR.

3.10. Languages
The default language setting is the user’s web browser language setting and use it if
possible. The following example forces the English language version, and the last

18

Chapter 3. General options

forces the Slovak language version.

Example 3-19. Languages selection

// client language (default)
$opts[’language’] = $HTTP_SERVER_VARS[’HTTP_ACCEPT_LANGUAGE’];

$opts[’language’] = ’EN’; // forces english language
$opts[’language’] = ’SK’; // forces slovak language

Available languages are:

DE german (standard)
DK danish
EN-US english (United States)
EN english
ES spanish
ES-AR spanish (argentinian)
FR french (standard)
IT italian (standard)
NL dutch (standard)
PL polish
PT portuguese (standard)
PT-BR portuguese (brazilian)
RU russian
SK slovak

Language codes are based on ISO-3166 standard, which is available on many places, in
example here (http://www.samspade.org/d/iso3166.html).

3.11. CGI variables
You can optionally append or overwrite individual variables returned from the CGI
environment (GET/POST HTTP protocol data). Use these two arrays for this purpose,
where array key means CGI variable name, and array value means CGI variable value.

This will turn on search filter on script initialization. However, it is still possible to turn
it off by explicit click onHide or Clear button.

19

Chapter 3. General options

Example 3-20. CGI variables appending

$opts[’cgi’][’append’][’fl’] = 1

Next example shows how to cause descending sorting according first field in all cases.
Because[’overwrite’] is used, sorting column cannot be altered by user by clicking
on column heading.

Example 3-21. CGI variables overwriting

$opts[’cgi’][’overwrite’][’sfn’] = ’-0’;

Using$opts[’cgi’][’persist’] option you can tell phpMyEdit names and values
of CGI variables which should be persistent during various pages reloading and
serving. They will be included into all links and also into all forms as appropriate
hidden inputs. This feature is provided especially for advanced and experienced users
using phpMyEdit in their medium-size and large-size projects. If you do not understand
what does this thing do, feel free to skip it. You will surely do not need it.

Example 3-22. Persistent CGI variables

$opts[’cgi’][’persist’] = array(
’article_id’ => $article_id,
’session_id’ => $SESSION_ID
);

3.12. CSS classes policy
CSS classes policy in phpMyEdit is one from the most complicated and complex
features. The goal is to reach almost any possible classification of HTML elements
with the possibility to simplify classification to lower number of classes.

The phpMyEdit CSS class schema is displayed here:

20

Chapter 3. General options

Example 3-23. CSS class name schema

<prefix>-<element>-<page_type>-<position>-<divider>-<postfix>

Particular parts are described here:

• Theprefix part is straighforward. Every phpMyEdit CSS class has a user
configurable prefix. It can be empty.

• Theelement represents the name or type of element. The examples areform , row ,
value , input and others.

• In order to distinguish between different types of pages there is apage_type . The
possible values for this part areadd , view , change , copy , delete . This part is
empty for table listing and table filtering pages.

• There are also some elements, which occur on the top and on the bottom of page as
well. For this matter there isposition part present with possible valuesup and
down.

• Thedivider aim is to provide difference between even and odd table listing rows.
This part, if present, is always numeric with values starting from0.

• At the end of CSS class name ispostfix . This part is related to a particular field.
Every field can have its own postfix. See field’sCSS customizationfor more
information.

• The default separator between parts is dash (-) and can be changed if desired.

CSS class names configuration is handled via$opts[’css’] associative array. Here
are possible configuration options related to this issue.

$opts[’css’][’prefix’] prefix of every phpMyEdit CSS class (pmeby default)
$opts[’css’][’page_type’] if page type should occur in class name (disabled by default)
$opts[’css’][’position’] if position on the page should occur in class name (disabled by default)
$opts[’css’][’divider’] how many list table rows should have their own number before starting counting again from0 (by default2; value of-1 means every row has its own number and value of0 means disabled)
$opts[’css’][’separator’] separator between CSS class name parts (dash- by default)

For concrete names of CSS classes look into HTML source code of your generated
page. In the following box are examples of how CSS class names may appear. However
your CSS class names can differ according to your fields and configuration
respectively.

Example 3-24. CSS class name examples

pme-navigation-up

21

Chapter 3. General options

pme-row-0
pme-cell-DateTime
pme-cancel-view
pme-input-change
pme-key-ArticleID

22

Chapter 4. Fields options
This chapter deal with options related to particular database columns. Later there will
be often used termfield, what means exactly the same thing ascolumn.

4.1. Definition overview
Fields will be displayed in table columns left to right on the screen in the order in
which they appear in the script. Re-arrange the order of the arrays in order to alter the
order in which columns are displayed.

Display of a particular column can also be suppressed. Below is an example of the
array for a column named ’topic’:

Example 4-1. Basic field definition

$opts[’fdd’][’topic’] = array(
’name’ => ’Topic’,
’select’ => ’T’,
’maxlen’ => 100,
’nowrap’ => false,
’required’ => true,
’sort’ => true

);

Because so many questions related to PHP programming language semantics and basis
are often asked, please point on the following explanation of "two" ways of possible
field options initialization. If you are enough experienced and familiar with PHP, feel
free to skip to the next section.

As it was mentioned, there are two ways how to initialize array in PHP.

1. Direct one using
$opts[’fdd’][’col_name’] = array(’option’ => ’value’) which is
showed above.

2. Postinitialization one using
$opts[’fdd’][’col_name’][’option’] = ’value’ which is used in many
examples in this documentation.

23

Chapter 4. Fields options

You may realize, that it is the same if you will change or add option into basic field
definition (see examplearray() and notes in first point above) or you will add
separated option initialization after this field definition as it is described in second case.

4.2. Basic options

Field name
When the MySQL column name is not appropriate for display as the title of the column
in the displayed table, alternate text can be specified. To display the word "Subject"
instead of the name "Topic" for the example column from previous chapter, add the
following option to the script:

Example 4-2. Field name examples

$opts[’fdd’][’topic’][’name’] = ’Subject’;

When creating MySQL tables for use with phpMyEdit, consider using the underscore
character in certain field names. For example, a MySQL column named "last_name"
will be displayed as "Last name" in tables created using phpMyEdit (underscore
characters are replaced with a space).

Guidance / Help
Sometimes a short title can’t be explicit enough, so it is neccessary to provide the user a
large description on a given field when he is manipulating with field data. For this
purpose was$opts[’fdd’][’col_name’][’help’] option created. Content of this
option will appear in the third column of record display pages.

This option is optional. If there is no[’help’] option for all columns, the third "help"
column will be omitted.

Example 4-3. Field guidance

$opts[’fdd’][’topic’][’help’] = ’Enter topic of article here.’;

24

Chapter 4. Fields options

CSS customization
Per field, you can define field CSS class names postfix. This is especially useful in
order to highlight one column in a table.

Example 4-4. Field CSS customization

$opts[’fdd’][’col_name’][’css’] = array(
’postfix’ => ’ColName’
);

More information about CSS handling can be found in theCSS classes policysection.

Selection boxes
Specify field input type as text box, numeric comparsion text box, drop-down selection,
or multiple selection. The same input type will be used also for table filtering.

Example 4-5. Filter selections

$opts[’fdd’][’col_name’][’select’] = ’T’; // text box
$opts[’fdd’][’col_name’][’select’] = ’N’; // numeric
$opts[’fdd’][’col_name’][’select’] = ’D’; // drop down
$opts[’fdd’][’col_name’][’select’] = ’M’; // multiple selection

Display options
An optional parameter to control whether a field is displayed in the add, change, copy,
delete, view, list, or filter views.

A -- add
C -- change
P -- copy
V -- view
D -- delete

25

Chapter 4. Fields options

L -- table list
F -- table filter

Additional column-specific options that apply to certain views or modes (add, change,
delete, list) are:

R -- indicates a field is read only
W -- indicates a field is a password field
H -- indicates a field is to be hidden and marked as hidden

Example 4-6. Other display options

$opts[’fdd’][’col_name’][’options’] = ’H’; // hidden field
$opts[’fdd’][’col_name’][’options’] = ’P’; // password field
$opts[’fdd’][’col_name’][’options’] = ’R’; // read-only field

4.3. Booleans
All variables in following section should have onlytrue or false value.

Required fields
By default, JavaScript will be generated to prevent null entries by the user. If an entry is
not required for a particular field, change the setting tofalse .

Example 4-7. Required fields

$opts[’fdd’][’col_name’][’required’] = true;
$opts[’fdd’][’col_name’][’required’] = false;

Sorting
Allow users to sort the display on this column. Use "true" for enable, "false" for

26

Chapter 4. Fields options

disable.

Example 4-8. Field sorting

$opts[’fdd’][’col_name’][’sort’] = true;
$opts[’fdd’][’col_name’][’sort’] = false;

Striping tags
If you are storing HTML and/or PHP content in you database columns, you may want
to have$opts[’fdd’][’col_name’][’strip_tags’] variable turned on for
particular fields. It will strip HTML and PHP tags from field content, when displaying
column in table listing.

Example 4-9. Striping tags

$opts[’fdd’][’col_name’][’strip_tags’] = true;
$opts[’fdd’][’col_name’][’strip_tags’] = false;

4.4. Input restrictions
You can restrict user input for selected fields to selected values. There are several ways
to do this. A variety of methods and examples appear below.

Simple restriction
Simple restriction means to restrict user input to the specified constants. Examples
appear below.

Example 4-10. Simple input restriction

$opts[’fdd’][’col_name’][’values’] = array(”,’No’,’Yes’); // default is ” (nothing)
$opts[’fdd’][’col_name’][’values’] = array(”,’Yes’,’No’); // default is ” (nothing)
$opts[’fdd’][’col_name’][’values’] = array(’0’,’1’); // default is 0

27

Chapter 4. Fields options

$opts[’fdd’][’col_name’][’values’] = array(’A’,’B’,’C’); // default is A
$opts[’fdd’][’col_name’][’values’] = array(’No’,’Yes’); // default is No
$opts[’fdd’][’col_name’][’values’] = array(’Yes’,’No’); // default is Yes
$opts[’fdd’][’col_name’][’values’] = range(1,99);

Table lookup
Variables$opts[’fdd’][’col_name’][’values’][’table’] and
$opts[’fdd’][’col_name’][’values’][’column’] restricts user input to the
values found in the specified column of another table. The optional
[’values’][’description’] field allows the values displayed to the user to be
different from those in the[’values’][’column’] field. This is useful for giving
more meaning to column values.

Example 4-11. Table lookup restriction

$opts[’fdd’][’col_name’][’values’][’table’] = ’extractTable’;
$opts[’fdd’][’col_name’][’values’][’column’] = ’extractColumn’;
$opts[’fdd’][’col_name’][’values’][’description’] = ’extractDescription’; // optional

Column joining
It is also possible to have multiple fields in your description. For example, to
concatenate two description labels found in a different table:

Example 4-12. Advanced table lookup

$opts[’fdd’][’col_name’][’values’][’description’][’columns’][0] = ’desc_column_1’;
$opts[’fdd’][’col_name’][’values’][’description’][’columns’][1] = ’desc_column_2’;
$opts[’fdd’][’col_name’][’values’][’description’][’divs’][0] = ’ ’;

The ’div’ component is what will be used as a divider between the columns in the
display. You don’t need to define the last ’div’ field if it isn’t required. So, for example
if you have a series of people in a table, with a separate column for id, first name, and
last name, you could use:

28

Chapter 4. Fields options

Example 4-13. Complex table lookup example

$opts[’fdd’][’col_name’][’values’][’db’] = ’mydb’; // optional
$opts[’fdd’][’col_name’][’values’][’table’] = ’mytable’;
$opts[’fdd’][’col_name’][’values’][’column’] = ’id’;
$opts[’fdd’][’col_name’][’values’][’description’][’columns’][0] = ’name_last’;
$opts[’fdd’][’col_name’][’values’][’description’][’divs’][0] = ’, ’;
$opts[’fdd’][’col_name’][’values’][’description’][’columns’][1] = ’name_first’;
$opts[’fdd’][’col_name’][’values’][’filters’] = ’id IN (1,2,3)’; // optional WHERE clause
$opts[’fdd’][’col_name’][’values’][’orderby’] = ’last_name’; // optional ORDER BY clause

If prefixation with some string in column description is desired, the
$opts[’fdd’][’col_name’][’values’][’description’][’divs’][-1] can
be used. It will precede
$opts[’fdd’][’col_name’][’values’][’description’][’columns’][0]

column.

Note that the above example contains additional features, such as filtering values using
[’filters’] , and ordering values using[’orderby’] .

Additional values
Additional values to table lookup could be stored in[’values2’] array. The main
difference between simple[’values’] usage is, that array keys will be stored into
database and array values will be printed out in input section boxes. This is especially
useful for MySQL enumerations when you do not want to print out enumeration keys,
but rather some more user-friendly texts. See example:

Example 4-14. Input restriction using additional values

$opts[’fdd’][’col_name’][’values2’] = array(
’displayed’ => ’Displayed Article’,
’hidden’ => ’Hidden Article’,
’disabled’ => ’Disabled Article’,
’deleted’ => ’Deleted Article’

);

29

Chapter 4. Fields options

In the example above, keywords ’displayed’, ’hidden’, ’disabled’ and ’deleted’ will be
stored in database, but user-friendly expressions will appear in select box for user.
Usage of[’values2’] can be combined with[’values’] usage.

4.5. Output control

Field width
An optional display width specification for a column.

Example 4-15. Input field widths

$opts[’fdd’][’col_name’][’width’] = ’100px’;
$opts[’fdd’][’col_name’][’width’] = ($opts[’fdd’][’col_name’][’trimlen’] * 8).’px’;

Maximum field length
Maximum length of input boxes displayed for Add / Change record mode may be set as
pixels (px).

Example 4-16. Field sizes

$opts[’fdd’][’col_name’][’maxlen’] = ’100px’;
$opts[’fdd’][’col_name’][’maxlen’] = ’150px’;

Textarea sizes
If the above setting does not work for you, you are probably attempting to change
textarea size. It is also possible to specify the size of a textarea used to give multi-line
input. Try something like:

30

Chapter 4. Fields options

Example 4-17. Textarea field height & width

$opts[’fdd’][’col_name’][’textarea’][’rows’] = 1;
$opts[’fdd’][’col_name’][’textarea’][’cols’] = 40;

Character length limit
If a table contains a number of text columns which each contain quite a bit of text, the
table will likely scroll off the screen. This can be prevented by displaying only a
portion of the content from a particular column.

For example, to display only the first 30 characters from a column named
’explanation’, add the following:

Example 4-18. Character length limit

$opts[’fdd’][’explanation’][’trimlen’] = 30;

You may find it useful to limit the number of characters displayed for one or more
columns. This option is approximately equivalent to the following PHP statement:

if (strlen($value) > $trimlen) {
echo substr($value, 0, $trimlen - 3) . ’...’;

}

Wrapping
The ’nowrap’ option is essentially equivalent to the HTML markup <td nowrap>.

Example 4-19. Wrapping

$opts[’fdd’][’col_name’][’nowrap’] = true;
$opts[’fdd’][’col_name’][’nowrap’] = false;

31

Chapter 4. Fields options

Print mask
A string that is used bysprintf() to format field output. For more information about
this function usage, please refer to its manual page
(http://www.php.net/manual/en/function.sprintf.php) in PHP documentation.

Example 4-20. Print mask field definition

$opts[’fdd’][’col_name’][’mask’] = ’%%’; // a literal percent character
$opts[’fdd’][’col_name’][’mask’] = ’%01.2f’; // currency or floating-point number
$opts[’fdd’][’col_name’][’mask’] = ’%.10s’; // trim string to 10 characters

Date masks
Date mask is string that is used to format date and/or time fields using PHP’s function
call. You can use[’datemask’] option to format date and time usingdate()

(http://www.php.net/manual/en/function.date.php) function or you can use
[’strftimemask’] option to format date and time usingstrftime()

(http://www.php.net/manual/en/function.strftime.php) function. See function’s manual
pages for valid formatting characters.

Example 4-21. Date mask field definitions

$opts[’fdd’][’col_name’][’datemask’] = ’r’;

Note that currently only fields displaying is implemented. Entering date fields
concerning to these masks will be implemented in the nearly future.

4.6. URL linking
Fields can be made ’clickable’ in the display using[’URL’] variable. Primary
examples follows:

Example 4-22. Simple URL examples

$opts[’fdd’][’col_name’][’URL’] = ’http://$value’;

32

Chapter 4. Fields options

$opts[’fdd’][’col_name’][’URL’] = ’mailto:$value’;

Note that the following are available as variables for usage in[’URL’] :

$key -- key field for record
$name -- name of the field
$value -- value of the field
$css -- CSS class name
$page -- this HTML page
$url -- CGI variables

To open a link in a new web browser window use:

Example 4-23. URL target example

$opts[’fdd’][’col_name’][’URLtarget’] = ’_blank’;

To display alternative link text use:

Example 4-24. URL display example

$opts[’fdd’][’col_name’][’URLdisp’] = ’Launch Page’;

Old 3.5 behaviour is also supported via[’URLprefix’] . It will prepend string before
if it is not already present there. Variable[’URLpostfix’] similary to
[’URLprefix’] will append string after if it is not already present there.

Example 4-25. URL prefix and postfix

$opts[’fdd’][’col_name’][’URLprefix’] = ’mailto:’;
$opts[’fdd’][’col_name’][’URLprefix’] = ’http://’;
$opts[’fdd’][’col_name’][’URLprefix’] = array(’http://’, ’ftp://’);

In the third example you can see that array of prefixes or postfixes are supported. First
member of array is added to URL value only if none from the elements was matched.
This is especially useful in having intelligent URL links with added ability to enter
addresses like "www.platon.sk" without preceding "http://".

33

Chapter 4. Fields options

34

Chapter 5. Extensions
There are often situations, when more specific functionality is needed from phpMyEdit.
You will surely agree, that it will be really strange to hardcode all these particular
requirements into the core phpMyEdit class. For this reason the extension mechanism
is provided.

5.1. Overview
Extensions are phpMyEdit_<something> classes, where <something> is an appropriate
extension name. They not only extend base phpMyEdit class, but they also add new
functionality. But they may not only add new things. It is possible also to disable such
features, simply to get the desirable behaviour.

In addition to common phpMyEdit configuration options, extension configuration is
usually provided by$opts[’ext’] associative array. Possible keys are described on
particular extension pages in this manual. Please refer to them to get more information.

Extensions are currently not part of phpMyEdit distribution. They are only in CVS
repository (http://www.platon.sk/cvs/cvs.php/phpMyEdit/extensions/), because they are
still under development and they are changing a lot. This manual chapter is provided
for letting phpMyEdit users know, that something like this exists. The only way how to
get extension files is to fetch them from CVS. All extensions need to be placed under
theextensions/ subdirectory below the phpMyEdit core class location.

Several new extensions are planned to create or handle more or less specific tasks,
especially those which are not appropriate for the phpMyEdit core class. You can feel
absolutely free to improve existing extensions, suggest new improvements for them, or
create new extensions to fit your own needs. We will be happy to add them to
repository.

5.2. phpMyEdit-slide
phpMyEdit-slide can create slideshow with ability to view and/or edit records.
Everytime is exactly one record shown. Record can be displayed in view or edit mode.
View mode looks like "view" functionality in normal phpMyEdit, change mode looks
like "change" functionality in normal phpMyEdit.

35

Chapter 5. Extensions

The only difference is that two buttons,Prev andNext, are displayed in addition to
common view/edit buttons to provide ability of going to the next or previous record.
This extension purpously disable "add", "copy", "delete", and "table listing"
functionalities.

Here are configuration variables related to extension. All of these phpMyEdit-slide
options are optional.

$opts[’ext’][’rec’] -- primary key value of record to display initially
$opts[’ext’][’next_disable’] -- disableNext button
$opts[’ext’][’prev_disable’] -- disablePrev button

Following variables are not options, but they are used internally by extension. They can
be used for getting some information for example in triggers.

$opts[’ext’][’next’] -- primary key value of next record
$opts[’ext’][’prev’] -- primary key value of previous record

To use this extension you have to include
extensions/phpMyEdit-slide.class.php file instead of common phpMyEdit
class file.

5.3. phpMyEdit-report
phpMyEdit-report extension is provided for easy table report creation. There is often a
need for selecting particular fields from table with applying specific filter options and
finally write out chosen subset of data (report) to HTML page.

Navigation is easy to use. Field selection menu would be displayed iffields_select

parameter is passed by GET or POST HTTP method to PHP script and it has
non-empty value. This field selection menu contains list of checkboxes connected with
columns, list of filtering input fields and also button for report creation. Every report
page has ability to return back into field selection. It is possible to specify amount of
records on report page, what is by default set to unlimited.

To use this extension simply includeextensions/phpMyEdit-report.class.php

file instead of common phpMyEdit class file. Extension specific configuration
parameters currently do not exist, thus all table columns are allowed to be selected in
final report. This will surely change in future, because table could have columns that
need to be unselectable for final report (such as password column or similar).

36

Chapter 6. Other information

6.1. Authors and homepage
phpMyEdit had amount of project maintainers.

• John McCreesh <jpmcc@users.sourceforge.net > founded project and
developed all versions 0.x, 1.x, 2.x and 3.x.

• Jim Kraai <jkraai@users.sourceforge.net > maintains phpMyEdit versions
4.x.

• Ondrej Jombik <nepto@platon.sk > is current project maintainer. He develops
version 5.0 and laters.

Many thanks to various project contributors. Seedoc/ChangeLog file for credits.
Special thanks belongs to Pau Aliagas <pau@newtral.com > who converted
phpMyEdit to PHP class in version 3.0.

Please do not write previous maintainers support questions, suggestions, bug reports or
patches. Use Platon.SK bug-tracking system, support forum or phpMyEdit mailinglist
for these purposes.

Copyright (c) 2002-2003 Platon software development group, http://www.platon.sk/

The official phpMyEdit homepage is: http://www.platon.sk/projects/phpMyEdit/

The phpMyEdit project management page is:
http://www.platon.sk/projects/main_page.php?project_id=5

This documentation is related to phpMyEdit version 5.3 which was released in 8th
April 2003.

6.2. License
This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.

37

Chapter 6. Other information

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA.

6.3. Support and feedback

Bug-tracking system
We are happy to accept bug reports, suggestions for improvement, or improved code,
preferably via our Platon.SK (http://www.platon.sk/) bug-tracking system where
everyone can see them. When submitting a new bug report, make sure the same bug is
not already submitted. If not, go straight to the new bug submission link and enter
exhaustive details by filling out all the required fields.

All bugs listing page:
http://www.platon.sk/projects/view_all_bug_page.php?project_id=5

New bug submission:
http://www.platon.sk/projects/bug_report_advanced_page.php?project_id=5

Support forum
A web based forum has been established to provide support for phpMyEdit. There you
can discuss and consult general issues related to this project. Installation, configuration
and usage questions can be asked there. The forum is also the right place for
brainstorming about new features, since more opinions and points of view can be
presented. The whole matter needs to be completelly re-thought before it will be
submitted into bug-tracking system, marked as a feature request and finally
implemented.

http://www.platon.sk/forum/projects/?c=5

38

Chapter 6. Other information

Feedback
Feel free to correct the text of the documents and messages in this project if you find a
mistake or typo.

Usage of mentioned services is prefered, however if you need to contact authors
directly, use the following <platon@pobox.sk
(mailto:platon@pobox.sk?subject=phpMyEdit)> e-mail address and write ’phpMyEdit’
keyword in the Subject line.

Translations
If you don’t find in lang/ subdirectory a translation into your language, you can make
one. Before spending time creating a translation, check
http://www.platon.sk/cvs/cvs.php/phpMyEdit/lang/ to see if development for that
translation has already begun.

6.4. Mailinglist
There is phpMyEdit mailinglist provided on SourceForge.Net (http://sourceforge.net/).
Subscription is strongly recommended, especially if you want to discuss new features
or participate on further ideas and thoughts.

You can join this mailinglist by accessing following link

http://lists.sourceforge.net/lists/listinfo/phpmyedit-discuss

Another possibility is by sending e-mail with keyword ’subscribe’ in Subject line to
following e-mail address

<phpmyedit-discuss-request@lists.sourceforge.net >

6.5. CVS access
Whole phpMyEdit project is provided in Platon software development group
(http://www.platon.sk/) CVS repository. It is possible to review our CVS repository
using CVSweb interface (http://www.platon.sk/cvs/cvs.php/phpMyEdit/), but it is also
possible to checkout files using anonymous access.

39

Chapter 6. Other information

Particular CVS instructions follows. Platon CVS repository can be checked out through
anonymous (pserver) CVS with the following instruction set. When prompted for a
password for anonymous, simply press theEnter key.

export CVSROOT=:pserver:anonymous@kepler.fmph.uniba.sk:/home/cvs
cvs login
cvs checkout phpMyEdit

These commands should work with no problems on any UNIX-like system with cvs
client installed. For checkouting on MS-Windows platform you can use one from
several free available CVS client softwares.

40

